w^2-18w-81=12

Simple and best practice solution for w^2-18w-81=12 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for w^2-18w-81=12 equation:



w^2-18w-81=12
We move all terms to the left:
w^2-18w-81-(12)=0
We add all the numbers together, and all the variables
w^2-18w-93=0
a = 1; b = -18; c = -93;
Δ = b2-4ac
Δ = -182-4·1·(-93)
Δ = 696
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{696}=\sqrt{4*174}=\sqrt{4}*\sqrt{174}=2\sqrt{174}$
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-2\sqrt{174}}{2*1}=\frac{18-2\sqrt{174}}{2} $
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+2\sqrt{174}}{2*1}=\frac{18+2\sqrt{174}}{2} $

See similar equations:

| 8n÷2n=4 | | k^2+1/4k=9/16 | | (k+1/2)^2=9/16 | | 4x^2-x=-13x | | 3y²-4y+2=0 | | 2x+4=-0,5x-1 | | 2x+3x+5x=35 | | -3s²+9s=0 | | n^+6N=27 | | n^+6N=278 | | x+6^2=15 | | x²—10x+25=0 | | 2y^2+10=4y | | x2=14x | | 6y^2+10=5y | | X+6x+2=30 | | 4t²-225=0 | | 6p2-8p+2=0 | | -(x)^3+4x-2=0 | | x²–2x=3 | | 5^(2x+1)=25^(x)+20 | | 11r+15=-12r^2 | | 5^2x+1=25^x+20 | | (x+4)^2=6 | | x+0.2x=429.11 | | 4+3k=2-4k | | 4u^2+u=15 | | 3x-9=x+7= | | 2v=v+90 | | 587000+0.10x+0.15x=x | | 3-7x-4x^2=0 | | 4x²-32x=-28 |

Equations solver categories